Big Bang / The origin of electronics

Peter Stallinga UAlg 2011

Big Bang Theory

The origin of matter

Everything in the universe has quantum numbers:

- Mass (energy)
- Charge
- Spin
- Baryon number

Elementary Particles

Baryon = 3 quarks

- Neutron (ddu). Charge: $-1 / 3+-1 / 3+2 / 3=0$
- Proton (uud). Charge: $-1 / 3+2 / 3+2 / 3=1$

Lepton

- Electron (e). Charge: -1

The origin of matter

Elementary Particles

Baryon = 3 quarks

- Neutron (ddu). Charge = 0
- Proton (uud). Charge = 1 Lepton
- Electron (e). Charge: -1

Atom:
n protons $+n$ electrons $+m$ neutrons
Charge $=0$

Example: Na (sodium): $n=11, m=11$ or 12

The origin of matter

Elementary Particles

Molecule: n atom-x + m atoms-y, etc. Charge $=0$

Example: Caffeine $=8 x C+10 x H+4 x N+2 x O$

The origin of matter

Matter:

Combined molecules Charge $=0$

Example: Human

The origin of current

Current is the passage of charge

- Electrons
- Protons (quarks)

1 unit of charge is $q=1.6 \times 10^{-19} \mathrm{C}$
1 ampere is by definition 1 coulomb per second ($1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}$)

In a typical domestic appliance (fx, vacuum cleaner): about 10^{19} electrons per second!

The magnitude of current

In a typical domestic appliance (fx, vacuum cleaner): about 10^{19} electrons per second!

Ontario Highway 401 (busiest road in the world): 430,000 cars/day
In 1 second in a vacuum cleaner pass as many electrons as cars on that highway in 64 billion years! (Mote: the universe is only 13.7 billion years old)

The sign of current

Current has opposite sign compared to movement of electrons:

Separation of charge. Metals

Objects (atoms, molecules, humans, resistors, capacitors) have zero net charge

To have current, positive and negative charge has to be separated

1: In metals some of the electrons are disconnected from the nuclei and can move freely

Swarm of delocalised electrons

Separation of charge. Semiconductors

Objects (atoms, molecules, humans, resistors, capacitors) have zero net charge

To have current, positive and negative charge has to be separated 1: In semiconductors some of the atoms have an electron too many or too few for bonding with other atoms

Donor: 1 electron too
many

Extra electron can be shaken lose from atom to make semiconductor behave like metal

Separation of charge. Band structure

Electrons of materials fill up from lowest energy to highest energy Not all energies are possible (quantum mechanics. Pauli exclusion principle)

Separation of charge. Band structure

Doping in semiconductors can make charge flow freely

Now that we know what is current. How to make it happen?

Gravity:
Two objects with mass attract each other. Cart + Earth.
Potential energy:

$$
\mathrm{E}=\mathrm{mgh}
$$

Potential energy storage and release

Two objects with different sign charge attract each other.
Electron + Ion
Potential energy:
$E=q V$

Volt (electrical potential) is like mountains

It costs energy to separate the charge. Like separating mass (rolling a ball up a hill)

The volt is per definition the energy per unit charge:

1 volt = 1 joule per coulomb

Force $2 \times 1 \mathrm{~kg}$ separated by distance Earth-Moon

$$
F=G m_{1} m_{2} / R^{2} \quad\left(G=6.674 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)
$$

$R=3.844 \times 10^{8} \mathrm{~m}$

$$
F=4.5 \times 10^{-28} \mathrm{~N}
$$

1 KG

Force $2 \times 1 \mathrm{~kg}$ separated by distance Earth-Moon

$$
R=3.844 \times 10^{8} \mathrm{~m}
$$

$$
F=G m_{1} m_{2} / R^{2} \quad\left(G=6.674 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)
$$

$$
F=4.5 \times 10^{-28} \mathrm{~N}
$$

Imagine the two weights stripped of all electrons
(Iron: 26 electrons/atom. Atomic weight: $55.845 \mathrm{u}, \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}$)
$q_{1}=q_{2}=4.49 \times 10^{7} \mathrm{C}$
$F=k q_{1} q_{2} / R^{2} \quad\left(k=8.988 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)$

$$
F=1.2 \times 10^{8} \mathrm{~N}
$$

Force is $\mathbf{3 5}$ orders of magnitude larger!

Voltmeter

We can measure the potential energy with a voltmeter

Volt times current is power

If volt is 'energy per charge' and current is 'charge passing per time', the product of the two is power
volt $=$ joule $/$ coulomb, ampere $=$ coulomb $/$ second
volt x ampere $=(\mathrm{J} / \mathrm{C}) \times(\mathrm{C} / \mathrm{s})=$ joule $/$ second $=$ watt

$V \times I=P$

Multimeter

Everything can be measured with a multimeter

Note there is no 'power' meter on a multimeter

kwH

If power is the product of volt and ampere, the integral of power is energy
volt $=$ joule $/$ coulomb, ampere $=$ coulomb $/$ second
volt x ampere $=(\mathrm{J} / \mathrm{C}) \mathrm{x}(\mathrm{C} / \mathrm{s})=$ joule $/$ second $=$ watt
energy = power x time
joule $=($ joule/second) \times second
$P(t)=V(t) \times I(t)$
$E=\int P(t) d t=\int V(t) I(t) \mathrm{d} t$

MIEET. The levels of knowledge

Physics
Electronics

Digital Electronics
Integrated Circuits
Micro Assembler
Machine Language
Macro Assembler
High Level Programming Languages
Object-oriented Programming
Distributed Programming
Information Processing

Optics / EM Waves

Telecommunications Internet
guages

